Stability of ancient masonry towers: Moisture diffusion, carbonation and size effect

نویسندگان

  • Daniele Ferretti
  • Zdeněk P. Bažant
چکیده

Moisture diffusion and carbonation influence the behavior of multiple-leaf ancient masonry walls, producing during centuries a redistribution of stresses from the core of lime mortar concrete to the external cladding of stiff masonry. This is likely one of the causes of long-time damage of some ancient masonry towers. With these motivations, coupled processes of moisture diffusion, carbon dioxide diffusion and carbonation reaction are analyzed numerically. Due to the absence of models and data for lime mortar, one of the simplest models proposed for Portland cement concrete is adapted for this purpose. The results reveal the time scales of the processes involved and their dependence on wall thickness (size). It is found that the temporal scale is set mainly by diffusion of moisture trough the massive concrete wall and is only slightly modified by carbonation. Moisture evolution in time is needed for stress analysis that is relegated to a subsequent paper. © 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of ancient masonry towers: Stress redistribution due to drying, carbonation, and creep

Extending the analysis of the evolution of pore humidity and carbonation presented in a preceding paper by Ferretti and Baz ̆ant, this paper analyzes the redistribution in time of vertical normal stresses across the multiple-leaf wall of ancient towers, using the example of collapsed Pavia Tower. It is shown that stress redistribution due to nonuniform shrinkage and nonuniform creep across the w...

متن کامل

Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission...

متن کامل

Vibration Mechanism of 13th Century Historical Menar-Jonban Monument in Iran

Abstract    Historical monument of Menar-Jonban (shaking tower) is located in the famous city of Isfahan in central Iran. Initial construction of this interesting and unique masonry monument belongs to 700 years ago. This monument has two vibrating circular towers of 7.5 m height. These towers are separated from each other by a distance of 9.2 m and constructed on top of an ancient tomb of 10 m...

متن کامل

Structural Monitoring and Life-time Assessment of Medieval Towers

The problem of structural stability of two medieval masonry towers is addressed. The geometrical and structural aspects of the towers were analysed and non-destructive tests were performed to assess the evolution of damage phenomena. The damage processes underway in some portions of the masonry were monitored using the Acoustic Emission (AE) technique. This method makes it possible to estimate ...

متن کامل

Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking

Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006